# Deconvolution of Mixing Time-Series on a Graph

Alexander W. Blocker<sup>1</sup> & Edoardo M. Airoldi<sup>1,2</sup>

<sup>1</sup>Harvard University Department of Statistics, <sup>2</sup>Harvard FAS Center for Systems Biology

## Problem

Interested in making inference on latent time series from indirect measurements — often low-dimensional projections resulting from mixing or aggregation

- Examples include positron emission tomography, super-resolution, and network traffic monitoring
- Inference in such settings requires solving a sequence of ill-posed inverse problems,  $y_t = Ax_t$ , where the projection mechanism provides information on A
- We consider problems in which A specifies mixing on a graph of times series that are bursty

# Methods — Overview

- Sequence of ill-posed inverse problems  $\boldsymbol{y}_t = A \boldsymbol{x}_t$
- Multilevel dynamic model with informative regularization
- Calibrating regularization with simpler method — data-driven, two-phase approach
- Efficient SMC inference on tightly-constrained spaces
- State-of-the-art performance on real networks & in large-scale simulation studies



# Probability Model

#### Latent Intensities

- Introduce time-varying intensity  $\lambda_{i,t}$  for each OD flow  $x_{i,t}$
- Intensity evolves over time according to

 $\log \lambda_{i,t} = \rho \log \lambda_{i,t-1} + \varepsilon_{i,t}$ 

• Process leads to bursty flows (few tightly cluster peaks) that are not sparse

#### Independent Variation

• Posit truncated normal model for  $x_{i,t}|\lambda_{i,t}|$ 







### $\Lambda t+1$ $X^{t+1}$ $X^{t+1}$ $X^t$ $X^t$ $Y^{t+1}$ $Y^{t+1}$

#### Notation

- origin-destination • Latent flows are  $(x_{1,t},\ldots,x_{m,t})=\boldsymbol{x}_t$
- Observed aggregate flows are  $(y_{1,t}, \ldots, y_{n,t}) =$  $\boldsymbol{y}_t$
- Routing matrix A is  $m \times n$ ;  $y_t = Ax_t$

## Regularization

- Calibrate regularization parameters for generative model using a simpler model — analogous to approach of Clogg et al. (1991).
  - Assuming  $x_t$  follows Gaussian autoregressive

# Estimation & Inference

- Using sequential Monte Carlo for estimation of probability model; sample-resample-move (SIRM) algorithm, akin to Gilks and Berzuini (2001)
  - Each iteration begins with SIR particle filter up-

### $x_{i,t}|\lambda_{i,t},\phi_t \sim \operatorname{TruncN}_{(0,\infty)}\left(\lambda_{i,t}, \ \lambda_{i,t}^{\tau}(e^{\phi_t} - 1)\right)$

• Structure approximates sparsity & retains computational stability by decoupling mass near 0 from bursty dynamic behavior

#### Posterior Updates & Multimodality

- Previous concerns about multimodality of posterior for this class of problem (e.g. Tebaldi and West 1998)
- Established that broad class of posterior updates lead to weakly unimodal (quasiconcave) posteriors for OD flows in continuous case
- Formally, quasiconcave predictive distribution  $\rightarrow$  quasiconcave posterior on OD flows; former holds for many procedures

### Results

#### Simulation Study

- Generated data from model on networks with latent of spaces between 2 and 9 dimensions
- Performed inference with informative and random-walk regularization

process; amounts to a standard Gaussian statespace formulation:

- $\boldsymbol{x}_t = F \cdot \boldsymbol{x}_{t-1} + Q \cdot \boldsymbol{1} + \boldsymbol{e}_t$  $\boldsymbol{y}_t = A \cdot \boldsymbol{x}_t + \boldsymbol{\epsilon}_t$
- Estimate Q and  $\operatorname{Cov} e_t$ ; fix  $F = \rho I$ ;  $\operatorname{Cov} \epsilon_t = \rho$  $\sigma^2 I$
- Assume  $Q = \operatorname{diag}(\boldsymbol{\lambda})_t$  and  $\operatorname{Cov} \boldsymbol{e}_t = \boldsymbol{\Sigma}_t =$  $\phi \operatorname{diag}(\boldsymbol{\lambda})_t^{\tau}$  — similar to Cao et al. (2000), adding explicit temporal dependence
- Maximum likelihood estimation of  $\lambda \& \phi$  within local windows
- Marginal likelihood calculation via standard Kalman filter

Regularization parameters set based on results of this estimation

- IPFP & smooth estimated OD flows with running median for feasibility & stability; obtain  $\hat{x}_t$
- $\theta_{1i,t} = \log \hat{x}_{i,t} \log \hat{x}_{i,t-1}$
- $\theta_{2i,t} = (1 \rho^2) \log(1 + \hat{V}_{i,t}/\hat{x}_{i,t}^2)$

date

- Particles then moved according to reversible kernel (MCMC iterations) for diversity
- Using "random directions algorithm" (RDA) of Smith (1984) to sample on constrained spaces
  - Given observed  $y_t = Ax_t$  and appropriate pivot of A, have  $A = [A_1A_2]$  where  $A_1$  is  $n \times n$  and full-rank
  - Pivoting and decomposing  $x_t$  analogously, have  $x_{1,t} = A_1^{-1}(y_t - A_2 x_{2,t})$
  - Decomposition allows for efficient randomwalk within feasible region for  $x_t$ ; fast computation of bounds along arbitrary directions
- Informative regularization guides computation — large decrease in particles needed
- Careful sampling on constrained spaces is vital — naïve alternatives can require  $10^9$  + draws for one feasible particle in small cases

• Found consistent performance gains from informative regularization, especially in larger networks

#### **Empirical Results**

- Data from two real-world networks: Bell Labs (as in Cao et al. 2000) and CMU
- Compared locally IID method of Cao et al. (2000); MCMC method of Tebaldi and West (1998); our model with random-walk (naïve) regularization; our calibration model; & our model with informative regularization
- Our two-phase method showed excellent performance & stability with lower computational cost than MCMC



## Performance Comparison

|                                    | BELL LABS   |      |             |      |  |
|------------------------------------|-------------|------|-------------|------|--|
| Method                             | $L_2$ Error | SE   | $L_1$ Error | SE   |  |
| Locally IID model                  | 104.59      | 5.54 | 160.24      | 6.53 |  |
| Smoothed locally IID               | 104.25      | 5.52 | 157.87      | 6.48 |  |
| Tebaldi & West (uniform prior)     | 76.60       | 4.91 | 173.94      | 7.49 |  |
| Tebaldi & West (joint proposal)*   | 49.43       | 2.58 | 147.66      | 6.18 |  |
| Dynamic multilevel model (naïve)   | 63.29       | 3.35 | 178.43      | 8.09 |  |
| Calibration model (stage 1)        | 19.35       | 0.72 | 57.66       | 2.06 |  |
| Dynamic multilevel model (stage 2) | 19.93       | 0.87 | 58.20       | 2.39 |  |

|                                    | CMU         |      |             |       |  |
|------------------------------------|-------------|------|-------------|-------|--|
| Method                             | $L_2$ Error | SE   | $L_1$ Error | SE    |  |
| Locally IID model                  | 592.49      | 9.91 | 1169.15     | 17.11 |  |
| Smoothed locally IID               |             |      |             |       |  |
| Tebaldi & West (uniform prior)     |             |      |             |       |  |
| Tebaldi & West (joint proposal)*   | 167.94      | 4.42 | 712.37      | 14.68 |  |
| Dynamic multilevel model (naïve)   | 311.21      | 6.25 | 1109.68     | 19.58 |  |
| Calibration model (stage 1)        | 110.47      | 6.19 | 389.14      | 16.72 |  |
| Dynamic multilevel model (stage 2) | 93.42       | 5.20 | 334.74      | 13.64 |  |

### Remarks

- Ill-posed inverse problems arise often in network applications
- Improving deconvolution performance by modeling key features of time series (burstiness, skewed marginals, etc.)
- Model-based regularization strategy improves upon non-informative priors
- Extensive validation of approach on both simulated and actual data
- Scalable technique computation scales linearly in length of series and in m - n
- Two-phase approach to inference leverages power of probability modeling without many of its drawbacks

### References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

- C. C. Clogg et al. Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression. Journal of the American Statistical Association, 86(413):68-78, 1991
- W.R. Gilks and C. Berzuini. Following a Moving Target-Monte Carlo Inference for Dynamic Bayesian Models. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 63(1):127–146, 2001.
- X. L. Meng. Machine learning with human intelligence: Principled corner cutting  $(pc^2)$ . Plenary Invited Talk, Annual Conference on Neural Information Processing Systems (NIPS), December 2010
- R. L. Smith. Efficient monte carlo procedures for generating points uniformly distributed over bounded regions. Operations Research, 32(6):pp. 1296–1308, 1984.
- C. Tebaldi and M. West. Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, 93(442):557-573, 1998.

Thanks to: AT&T, Facebook, Google, CDC. We would like to thank C Faloutsos, S Fienberg, E Xing,

D Blei, A Goldenberg, A Zheng, Z Ghahramani, J Leskovec, XL Meng, D Rubin, J Liu, S Kou, and J

Blitzstein. We would also like to thank our anonymous reviewers for their useful feedback.