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Problem
Interested in making inference on latent time series
from indirect measurements — often low-dimensional
projections resulting from mixing or aggregation
• Examples include positron emission tomogra-

phy, super-resolution, and network traffic mon-
itoring

• Inference in such settings requires solving a se-
quence of ill-posed inverse problems, yt = Axt,
where the projection mechanism provides infor-
mation on A

• We consider problems in which A specifies mix-
ing on a graph of times series that are bursty
and sparse.
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Methods — Overview
• Sequence of ill-posed inverse problems
yt = Axt

• Multilevel dynamic model with informative regu-
larization

• Calibrating regularization with simpler method
— data-driven, two-phase approach

• Efficient SMC inference on tightly-constrained
spaces

• State-of-the-art performance on real networks &
in large-scale simulation studies
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Notation
• Latent origin-destination flows are

(x1,t, . . . , xm,t) = xt
• Observed aggregate flows are (y1,t, . . . , yn,t) =
yt

• Routing matrix A is m× n; yt = Axt

Probability Model
Latent Intensities
• Introduce time-varying intensity λi,t for each OD

flow xi,t
• Intensity evolves over time according to

log λi,t = ρ log λi,t−1 + εi,t

• Process leads to bursty flows (few tightly cluster
peaks) that are not sparse

Independent Variation
• Posit truncated normal model for xi,t|λi,t

xi,t|λi,t, φt ∼ TruncN(0,∞)

(
λi,t, λ

τ
i,t(e

φt − 1)
)

• Structure approximates sparsity & retains com-
putational stability by decoupling mass near 0
from bursty dynamic behavior

Posterior Updates & Multimodality
• Previous concerns about multimodality of pos-

terior for this class of problem (e.g. Tebaldi and
West 1998)
• Established that broad class of posterior up-

dates lead to weakly unimodal (quasiconcave)
posteriors for OD flows in continuous case
• Formally, quasiconcave predictive distribution
→ quasiconcave posterior on OD flows; former
holds for many procedures

Regularization
Calibrate regularization parameters for generative
model using a simpler model — analogous to ap-
proach of Clogg et al. (1991).
• Assuming xt follows Gaussian autoregressive

process; amounts to a standard Gaussian state-
space formulation:

xt = F · xt−1 +Q · 1 + et
yt = A · xt + εt

• Estimate Q and Cov et; fix F = ρI; Cov εt =
σ2I

• Assume Q = diag (λ)t and Cov et = Σt =
φdiag (λ)

τ
t — similar to Cao et al. (2000),

adding explicit temporal dependence
• Maximum likelihood estimation of λ & φ within

local windows
• Marginal likelihood calculation via standard

Kalman filter

Regularization parameters set based on results of this
estimation
• IPFP & smooth estimated OD flows with running

median for feasibility & stability; obtain x̂t
• θ1 i,t = log x̂i,t − log x̂i,t−1

• θ2 i,t = (1− ρ2) log(1 + V̂i,t/x̂
2
i,t)

Estimation & Inference
Using sequential Monte Carlo for estimation of prob-
ability model; sample-resample-move (SIRM) algo-
rithm, akin to Gilks and Berzuini (2001)
• Each iteration begins with SIR particle filter up-

date
• Particles then moved according to reversible

kernel (MCMC iterations) for diversity
• Using “random directions algorithm” (RDA) of

Smith (1984) to sample on constrained spaces

– Given observed yt = Axt and appropriate
pivot of A, have A = [A1A2] where A1 is
n× n and full-rank

– Pivoting and decomposing xt analogously,
have x1,t = A−11 (yt −A2x2,t)

– Decomposition allows for efficient random-
walk within feasible region for xt; fast com-
putation of bounds along arbitrary direc-
tions

• Informative regularization guides computation
— large decrease in particles needed

• Careful sampling on constrained spaces is vital
— naïve alternatives can require 109+ draws for
one feasible particle in small cases

Results
Simulation Study
• Generated data from model on networks with la-

tent of spaces between 2 and 9 dimensions
• Performed inference with informative and

random-walk regularization
• Found consistent performance gains from infor-

mative regularization, especially in larger net-
works

Empirical Results
• Data from two real-world networks: Bell Labs

(as in Cao et al. 2000) and CMU
• Compared locally IID method of Cao et al.

(2000); MCMC method of Tebaldi and West
(1998); our model with random-walk (naïve) reg-
ularization; our calibration model; & our model
with informative regularization

• Our two-phase method showed excellent perfor-
mance & stability with lower computational cost
than MCMC
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Remarks
• Ill-posed inverse problems arise often in net-

work applications
• Improving deconvolution performance by mod-

eling key features of time series (burstiness,
skewed marginals, etc.)

• Model-based regularization strategy improves
upon non-informative priors

• Extensive validation of approach on both simu-
lated and actual data

• Scalable technique – computation scales lin-
early in length of series and in m− n

• Two-phase approach to inference leverages
power of probability modeling without many of
its drawbacks
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Performance Comparison
BELL LABS

Method L2 Error SE L1 Error SE
Locally IID model 104.59 5.54 160.24 6.53
Smoothed locally IID 104.25 5.52 157.87 6.48
Tebaldi & West (uniform prior) 76.60 4.91 173.94 7.49
Tebaldi & West (joint proposal)* 49.43 2.58 147.66 6.18
Dynamic multilevel model (naïve) 63.29 3.35 178.43 8.09
Calibration model (stage 1) 19.35 0.72 57.66 2.06
Dynamic multilevel model (stage 2) 19.93 0.87 58.20 2.39

CMU
Method L2 Error SE L1 Error SE
Locally IID model 592.49 9.91 1169.15 17.11
Smoothed locally IID — — — —
Tebaldi & West (uniform prior) — — — —
Tebaldi & West (joint proposal)* 167.94 4.42 712.37 14.68
Dynamic multilevel model (naïve) 311.21 6.25 1109.68 19.58
Calibration model (stage 1) 110.47 6.19 389.14 16.72
Dynamic multilevel model (stage 2) 93.42 5.20 334.74 13.64


