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Abstract

We derive an EM algorithm for the estimation of a¢ ne Gaussian state-space systems
with or without known inputs. We also provide comments on its numerical implemen-
tation & application and note recent extensions to predictive state representations.

1 Introduction

Linear and a¢ ne state-space systems are useful across a wide range of applications, from
control theory & signal processing to speech recognition & interest rate modelling. However,
despite their wide applicability and theoretical simplicity, the estimation of such systems
is nontrivial. One of the most straightforward approaches is to apply the expectation-
maximization (EM) algorithm originally developed by Dempster, Laird, and Rubin (1),
treating the unobserved state variable as missing data. This problem was previously ad-
dressed for the linear case without control inputs in (2); here, this approach is extended to
the a¢ ne case with and without known inputs. Some notes and cautions on the algorithm�s
implementation and usage are also provided.

2 EM Literature

As mentioned above, the EM algorithm was �rst formally presented by Dempster, Laird,
and Rubin in 1977 (1). It is a powerful method for obtaining maximum-likelihood parameter
estimates in the presence of missing data. The idea of the algorithm is to alternate between
computing the expectation of the sample log-likelihood conditional on the previous parameter
estimates (the expectation or "E" step) and maximizing this expectation with respect to the
desired parameters to obtain parameter estimates for the next recursion (the maximization or
"M" step). In (1), it was shown that this procedure is guaranteed to produce a monotonically
increasing sequence of expected sample log-likelihoods which converges to a local maximum
of the likelihood function (if the likelihood function is unimodal, this is clearly the unique
ML estimate).
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The application of the EM algorithm to state space systems has been an active area of
research for over 20 years. Shumway and Sto¤er presented some of the earliest work on the
topic in (3), which was then extended by Ghahramani and Hintons in (2). The latter piece
forms the basis for the procedure presented herein. Some examples of how this approach has
been applied can be found in (4) and (5).

3 Derivation

In its most general form, the model presented here is:

xt = Fxt�1 +But + "t, "t � Nk(0; Q) i.i.d.
zt = h+Hxt + !t, !t � Nn(0; R) i.i.d.

We assume that "t & !� are independent for all t & � . This is the basic setup of an a¢ ne
Gaussian state-space system, where zt is the observable output variable, ut is a known input,
and xt is the unobserved state variable (the noise variables "t & !t are also unobserved).
The parameters are the transition matrix F , input matrix B, observation matrix H, a¢ ne
term h; and the covariance matrices Q and R. Such a model is motivated by the problem
of measurement errors. The state variable of interest xt evolves according to some linear
dynamics with known inputs. However, we can only observe zt; a noisy, a¢ ne-transformed
version of xt: When considered in this framework, the restriction of independent errors
appears quite mild, as !t is just measurement noise.
It is important to note that, conditional on xt, zt is a multivariate normally distributed

random variable with mean h+Hxt and covariance matrix R. Similarly, conditional on xt�1
and ut, xt is a multivariate normally distributed random variable with mean Fxt�1+But &
covariance matrix Q. Thus, using the fact that the given process is Markovian and adding
the assumption that the initial state x0 is unconditionally normally distributed with mean
�1 & covariance V1, we obtain the following log-likelihood function:

�2` (X;Zj�) =
TX
t=2

(xt � Fxt�1 �But)0Q�1 (xt � Fxt�1 �But) + T log jQj

+
TX
t=1

(zt � h�Hxt)0R�1 (zt � h�Hxt) + (T � 1) log jRj

+(x1 � �1)0 V1 (x1 � �1) + log jV1j+ (2T � 1) log jV1j
where X is the T by k matrix of hidden states, Z is the T by n matrix of observations, and
� is a vector containing the given parameters.
Taking matrix derivatives, we obtain the following simpli�ed forms for the �rst order

conditions (FOCs):

F :
TX
t=2

�
xtx

0
t�1 � Fxt�1x0t�1 �Butx0t�1

�
= 0
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B :

TX
t=2

(xtu
0
t � Fxt�1u0t �Butu0t) = 0

Q�1 :

TX
t=2

(xt � Fxt�1 �But) (xt � Fxt�1 �But)0 = (T � 1)Q

h :

TX
t=1

(zt � h�Hxt) = 0

H :
TX
t=1

(ztx
0
t � hx0t �Hxtxt) = 0

R�1 :
TX
t=1

(zt � h�Hxt) (zt � h�Hxt)0 = TQ

x1 : x1 = �1

V1 : (x1 � �1) (x1 � �1)0 = V1

After taking the expectations of the above FOCs, we can obtain the formulas for the
M-step of the EM algorithm by solving for the desired parameters. However, before turning
to this step, we must consider the E-step.
As our state-space system has linear state dynamics and the measurement equation is

a¢ ne in the state, a combination of the Kalman �lter & smoother can be used to compute the
expectations of the necessary statistics. The �ltering is performed via the standard Kalman
�lter recursions. De�ne x̂t as the estimated state at time t, Vt as the estimated state variance
at time t, Pt as E [xtx0t] = Vt + x̂tx̂

0
t; and Pt;t�1 as E

�
xtx

0
t�1
�
= Vt;t�1 + x̂tx̂

0
t�1: Any variable

with a � superscript indicates an initial estimate, and an f superscript indicates a �ltered
estimate (as opposed to the �nal, smoothed estimates). The forward recursion equations, as
in (6), are:

x̂�t = Fx̂ft�1 +But

V �t = FV ft�1F
0 +Q

Kt = V �t H
0 �HV �t H 0 +R

��1
x̂ft = x̂�t +Kt

�
zt � h�Hx̂�t

�
V ft = (I �KtH)V

�
t

These formulas are applied recursively from t = 2 through T , with the initial values given
by �1 & V1. The smoother is then run in the opposite direction, from t = T � 1 through 1.
The equations for this backward recursion, as in (4) and (3), are:

Jt = V ft F
0 �V �t+1��1

x̂t = x̂ft + Jt

�
x̂t+1 � Fx̂ft �But

�
Vt = V ft + Jt

�
Vt+1 � V �t+1

�
J 0t
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Vt;t�1 = V ft J
0
t�1 + Jt

�
Vt;t�1 � FV ft

�
J 0t�1

The values for time T are given by x̂T = x̂
f
T , VT = V

f
T ; and VT;T�1 = (I �KTH)FV

f
T�1:

Using the series fx̂tg ; fPtg ; and fPt;t�1g from the E-step, we can write the solutions to
the FOCs in expectation terms as:

F̂ =

 
TX
t=2

Pt;t�1 � B̂utx̂0t�1

! 
TX
t=2

Pt�1

!�1

B̂ =

24 TX
t=2

x̂tu
0
t �
 

TX
t=2

Pt;t�1

! 
TX
t=2

Pt�1

!�1 TX
t=2

x̂t�1u
0
t

!35 �
24 TX
t=2

utu
0
t �
 

TX
t=2

utx̂
0
t�1

! 
TX
t=2

Pt�1

!�1 TX
t=2

x̂t�1u
0
t

!35�1

Q̂ =
1

T � 1

TX
t=2

Pt � F̂P 0t;t�1 � B̂utx̂0t

ĥ =
1

T

24 TX
t=1

zt �
 

TX
t=1

ztx̂
0
t

! 
TX
t=1

Pt

!�1 TX
t=1

x̂t

!35 �
241� 1

T

 
TX
t=1

x̂0t

! 
TX
t=1

Pt

!�1 TX
t=1

x̂t

!35�1

Ĥ =

 
TX
t=1

ztx̂
0
t � ĥx̂t

! 
TX
t=1

Pt

!�1

R̂ =
1

T

TX
t=1

ztz
0
t � ĥz0t � Ĥx̂tz0t

�̂1 = x̂1

V̂1 = V1

These are the key equations for the M-step of the algorithm. To modify them for a
version of the model without inputs or an a¢ ne measurement term, the only change required
is setting B̂ or ĥ to zero in the relevant equations. Applying both of these restrictions leads
to the same M-step equations found in (2).

4 Implementation

When writing a numerical implementation of this algorithm, setting the proper halting con-
dition is of great importance. In (1), Dempster, Lair, & Rubin show that an EM algorithm,
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such as the one given above, is guaranteed to converge to at least a local maximum. Thus,
in theory, one must simply tell the algorithm to stop when the expected log-likelihoods
produced by two sequential iterations are identical. In practice, this is not feasible due to
numerical imprecision and the sheer number of iterations that is often required to reach
such a �xed point. Therefore, the typical halting condition used for applications such as this
is a measure of the relative change in expected log-likelihood. De�ne `k as the expected
log-likelihood of the kth iteration. A typical halting condition would be:

Stop if
`k � `k�1

1
2
j`k + `k�1 + "j

< c

The averaging in the denominator is used to increase the stability of the condition, and the "
term is a small non-zero value is used to keep the condition well-behaved in the event a �xed
point is reached. A typical value for c in such a condition is between 1� 10�4 & 1� 10�6:
Initialization of the algorithm is also an important consideration. As mentioned earlier,

an EM algorithm is only guaranteed to converge to a local maximum of the likelihood
function, not the global maximum. For problems in low dimensions with relatively few
parameters to be estimated, this is not as large a concern. In particular, if the likelihood
function is unimodal, initialization will only a¤ect the speed of convergence, not the �nal
result. Unfortunately, for higher-dimensional problems (such as many state space estimation
problems), initialization has a signi�cant impact on the estimates produced by the EM
algorithm. Thus, using the EM algorithm on such systems with little or no prior knowledge
is frequently unproductive.
If one has some prior knowledge about the system�s parameters, the best course of action

is the initialize based on this information. One of the best examples of this situation would
be estimating the parameters for a physical system with partially understood system &
observation matrices. Another possible method relies on an assumption of independence.
If one believes that the �nal observations should be independent, independent components
analysis could be used to obtain an initial estimate for the observation matrix H: However,
this is a relatively strong assumption to make. Overall, the local maximization property
of the EM algorithm makes it more signi�cantly more useful for tuning a relatively known
model than for blind estimation of an unknown system.

5 Conclusion

We have presented a tractable EM algorithm for the estimation of a¢ ne state-space systems
with known inputs and provided some notes & cautions on its usage. For lower-dimensional
systems, this method is quite e¤ective; however, for higher-dimensional systems, it�s perfor-
mance deteriorates signi�cantly due to the local maximization property of EM algorithms.
To get past this limitation, some recent work has focused on predictive state representations
(PSRs), which de�ne systems using statistics over future observations. In (7), Ruday, Singh,
and Wingate show that any uncontrolled linear state-space system has an equivalent PSR.
They also demonstrate an algorithm for the estimation of the latter form, which is extended
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to controlled systems in (8). Their approach appears promising, but the basis for comparison
(and, in some cases, the preferred approach), remain expectation maximization algorithms
of the type presented here.
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